Electrónica y programación para Microcontroladores.

Libros técnicos para electrónica programable.

Email
Contactanos en:

consultas@firtec.com.ar

Arduino

Para quienes estén pensando en saltar al mundo de ARM en 32 bits está disponible en Argentina un libro publicado por Alfa Omega que trata la programación en C con el entorno Keil.
También se trata la programación para ESP32 y distintos ejemplos de uso para IOT.
Este libro lo distribuye Alfa Omega y distintas editoriales del país. 

 

IMPORTANTE: Nosotros no comercializamos el libro, solo se vende a través de las editoriales.

 

Nextion es probablemente una de las mejores opciones para crear proyectos con electrónica, podemos hacerlas funcionar con cualquier microcontrolador que disponga de un puerto serial. Para crear una interfaz gráfica en una pantalla Nextion usaremos el editor Nextion, un software provisto por el propio fabricante que hace la tarea del diseño realmente simple.
Una vez que tenemos todo los elementos de la interfaz desplegados en la pantalla se envía la programación a la propia pantalla usando una simple conexión serial.
Este editor de Nextion es la mejor solución, en realidad casi la única para crear proyectos con estas pantallas inteligentes.
Lamentablemente solo existe en versión para Windows que se descarga a través del enlace oficial de Nextion.
Proponemos diseñar la siguiente interfaz gráfica.
La pantalla dispone solamente de 4 pines. Dos de ellos son de alimentación (cable rojo y negro) y los otros dos son de recepción para el envío de datos por la conexión serial, recepción cable amarillo y transmisión cable azul, para conectar la pantalla a Raspberry PI estos cables se deben conectan cruzados TX con el cable amarillo y RX con el cable azul. 
La pantalla se programa por medio de una conexión serial desde el propio editor Nextion, para programar la pantalla se debe desconectar de Raspberry y conectarla al computador mediante un adaptador USB-RS232.
Cuando queremos mostrar un dato en la pantalla solo “apuntamos” al componente de la pantalla donde queremos enviar los datos y enviamos la información que se me mostrará donde se indicó, en este ejemplo hay una ventana donde se muestran datos de conversión que se identifica como n0 y que tiene una propiedad que se llama val. Solo debemos apuntar al objeto y su propiedad para mostrar los datos.

Sin embargo los mensajes están estructurados en un protocolo propio que se debe conocer para poder dialogar con la pantalla, los mensajes tienen el siguiente formato 65000501FFFFFF donde el número 65 indica que no hay errores, el siguiente número es la página (una interfaz gráfica puede tener varias páginas), luego tenemos el ID del componente que ha enviado el mensaje, luego el evento y por último tres bytes con FF que son los indicativos de fin de trama.
Por ejemplo imagine que quiere enviar datos al panel n0 desde Python escribimos lo siguiente:

puerto.write(b"n0.val=" + str(dato).encode() + b"\xFF\xFF\xFF")

El indicativo b dice que estamos enviando una cadena de bytes, en dato está el valor a mostrar y finalmente los tres bytes de EOF.
Si quiero recibir un evento desde la pantalla tengo que analizar la trama para saber desde cual página, cual elemento y que acción me esta llegando.
Como en este ejemplo solo tenemos una página y un solo botón las cosas son bastantes simples solo basta el siguiente código para saber cuando el botón envía mensajes y encender un LED según el caso.

datos_nextion = binascii.hexlify(puerto.readline())
mensaje = str(datos_nextion) 
for indice in range(len(mensaje)): 
          if indice > 3:
                        if mensaje[7] == "3" and bandera == 0: 
                                    bandera = 1 
                                    GPIO.output(16, 0) 
                       else:
                                    GPIO.output(16, 1) 
                                    bandera = 0 

El código completo para leer datos de un conversor MCP3201 y mostrarlos en un panel, también se detecta la acción de un botón para cambiar el estado de un LED conectado a un pin del puerto Raspberry.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import binascii
import time
import spidev
from serial import Serial
import RPi.GPIO as GPIO # Modulo para gestionar los pines GPIO
GPIO.setwarnings(False) # Ignora las advertencias
GPIO.setmode(GPIO.BCM) 	# Los pines serán referidos como Broadcom
spi = spidev.SpiDev()
spi.open(0, 0)
spi.max_speed_hz = 7629
time.sleep(1)
GPIO.setup(16, GPIO.OUT)# Pin 16 será salida
GPIO.output(16, 1)
 
puerto = Serial("/dev/ttyS0", baudrate=9600, timeout=0.2)
if puerto.isOpen() == False:
    puerto.open()
 
puerto.flushInput()
puerto.flushOutput()
bandera = 0
 
 
def Conversor():  # Lee el conversor MCP3201
    
    adc = spi.xfer2([0, 0])
    hi = (adc[0] & 0x1F);
    low = (adc[1] & 0xFe);
    dato = (hi << 8) | low;
    puerto.write(b"n0.val=" + str(dato).encode() + b"\xFF\xFF\xFF")
    
while 1:
    Conversor()
    try:   # Recibe los datos desde la pantalla Nextion     
        datos_nextion = binascii.hexlify(puerto.readline()) 
        mensaje = str(datos_nextion)        # Procesa los datos recibidos
        for indice in range(len(mensaje)):  # Recorre los bytes del mensaje
            if indice > 3:                  # Pantalla envió un mensaje?
                if mensaje[7] == "3" and bandera == 0:  # Mensaje del objeto?
                    bandera = 1             # Avisa que el LED está apagado
                    GPIO.output(16, 0)      # Pin 16 pasa a nivel bajo
                else:
                        GPIO.output(16, 1)  # Pin 16 pasa a nivel alto
                        bandera = 0         # Avisa que el LED está encendido
 
        puerto.flushInput()
        puerto.flushOutput()
        
    except (KeyboardInterrupt, SystemExit):
        puerto.close()
        spi.close()
        GPIO.cleanup()
        raise

En este ejemplo no interesa la página puesto sabemos que es 0 y el botón tiene el ID 3 (podrías ser cualquier número) que también sabemos viene en el casillero 7 de acuerdo a como Python 3 ensambla la trama de recepción.
El resultado final de la aplicación en funcionamiento es el siguiente:

(Todo sobre el manejo de estas pantallas lo encontrará en nuestro nuevo curso para Raspberry PI).

Los robots por software pueden resultar muy útiles a la hora del desarrollo de sistemas de control, mediante el uso de un Bot vamos a iniciar un chat por Telegram con una placa electrónica para leer datos de un sensor BME280 y controlar el estado de un pin.
Telegram fué anunciada oficialmente en el 2013, está enfocada a la mensajería instantánea, el envío de varios archivos y la comunicación en masa, la aplicación se parece mucho a WhatsApp con algunas funciones extras.

La idea es conectar ESP32 programado con el IDE de Arduino para que envíe mensajes de chat a Telegram, también se puede hacer lo mismo para WhatsApp sin embargo debido a las bibliotecas disponibles en este momento, es mas simple conectar con Telegram.
Para ensamblar el proyecto vamos a necesitar algunas bibliotecas siendo necesario que la versión de ArduinoJson encargada de manejar los textos de los mensajes enviados hacia y desde Telegram sea versión 5.x ya que versiones superiores no funcionan con la biblioteca de Arduino para Telegram.   

  • ArduinoJson-5.x.x.
  • Universal-Arduino-Telegram-Bot.
  • Bibliotecas para programar ESP32.

NOTA:
Para agregar las bibliotecas necesarias para el manejo de ESP32 con Arduino vamos a Archivos > Preferencias > Gestor de URLs Adiciones de Tarjetas y agregamos la siguiente línea: https://dl.espressif.com/dl/package_esp32_index.json

Estuvimos probando el funcionamiento del sensor MLX90614 montado sobre un escudo para mikrobus en un Arduino Uno. 
También conectamos una pantalla OLED de 96 x 39 pixeles en el mismo escudo, el funcionamiento resulta muy interesante para 
construir sistemas de medición, sistemas de alarma, etc.

 El código completo para Arduino es el siguiente. 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/********************************************************************************
   Descripción: Ejemplo para el sensor de temperatura  por infrarrojos MLX90614.
                El ejemplo también usa una pantalla OLED de 96 x 39 pixeles con
                un controlador I2C SSD1306.
                
   Placa Arduino: UNO
   Arduino IDE: 1.8.11
   www.firtec.com.ar
**********************************************************************************/
#include <SPI.h>
#include "oled.h"
#include <Wire.h>
#include <Adafruit_MLX90614.h>
 
#define OLED_CS         10
#define OLED_DC         6
#define OLED_RST        A3
 
Adafruit_MLX90614 mlx = Adafruit_MLX90614();
 
const char cartel_1 [] = {"TEMP."};
const char cartel_3 [] = {"AMBIENTE:"};
const char cartel_2 [] = {"OBJETO:"};
char buffer[10]=" ";
uint8_t _x, _y;
uint8_t _sx=1, _sy=1; 
 
 
void setup() {  
  SPI.begin();
  pinMode(OLED_CS, OUTPUT);
  pinMode(OLED_DC, OUTPUT);
  pinMode(OLED_RST, OUTPUT);
  OLED_Initialize();        // Configuración de la pantalla OLED
  delay(100);
  OLED_Clear();             // Borrado inicial de pantalla
  OLED_SetScale(1, 1);      // Letras en tamaño pequeño
  OLED_Puts(0, 1, cartel_2);// Muestras carteles iniciales
  OLED_Puts(0, 4, cartel_3);
  mlx.begin();              // Inicia el sensor MLX90614
}
 
void loop() {
  dtostrf(mlx.readObjectTempC(), 2, 1, buffer); // Temperatura del objeto pasada a ASCII
  OLED_SetScale(1, 3);                          // Cambia tamaño de letras
  OLED_Puts(60, 0, buffer);                     // Muestra la temperatura del objeto frente al sensor.
  OLED_SetScale(1, 1);                          // Cambia a letra pequeña
  dtostrf(mlx.readAmbientTempC(), 2, 1, buffer);// Lee y convierte a ASCII la temperatura ambiente
  OLED_Puts(65, 4, buffer);                     // Muestra la temperatura
  delay(500);
 
}
 
//------------ Funciones para la pantallas OLED -----------------
 
void OLED_Command(uint8_t temp){
  SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));
  digitalWrite(OLED_CS,LOW);
  digitalWrite(OLED_DC,LOW);
  SPI.transfer(temp);
  digitalWrite(OLED_CS,HIGH);
  SPI.endTransaction();
}
 
void OLED_Data(uint8_t temp){
  SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));
  digitalWrite(OLED_CS,LOW);
  digitalWrite(OLED_DC,HIGH);
  SPI.transfer(temp);
  digitalWrite(OLED_CS,HIGH);
  SPI.endTransaction();
}
 
void OLED_Initialize(void)
{
    digitalWrite(OLED_RST,LOW);
    delay(1000);
    digitalWrite(OLED_RST,HIGH);
    delay(1000);
    OLED_Command(SSD1306_DISPLAYOFF);             //0xAE  Set OLED Display Off
    OLED_Command(SSD1306_SETDISPLAYCLOCKDIV);     //0xD5  Set Display Clock Divide Ratio/Oscillator Frequency
    OLED_Command(0x80);
    OLED_Command(SSD1306_SETMULTIPLEX);           //0xA8  Set Multiplex Ratio
    OLED_Command(39);
 
    OLED_Command(SSD1306_SETSEGMENTREMAP);        //0xA1  Set Segment Remap Inv
    OLED_Command(SSD1306_COMSCANDEC);             //0xC8  Set COM Output Scan Inv
 
    OLED_Command(SSD1306_SETDISPLAYOFFSET);       //0xD3  Set Display Offset
    OLED_Command(0x00);
    OLED_Command(SSD1306_CHARGEPUMP);             //0x8D  Set Charge Pump
    OLED_Command(0x14);                           //0x14  Enable Charge Pump
    OLED_Command(SSD1306_SETSTARTLINE);           //0x40  Set Display Start Line
    OLED_Command(SSD1306_SETCOMPINS);             //0xDA  Set COM Pins Hardware Configuration
    OLED_Command(0x12);
    OLED_Command(SSD1306_SETCONTRAST);            //0x81   Set Contrast Control
    OLED_Command(0xAF);
    OLED_Command(SSD1306_SETPRECHARGE);           //0xD9   Set Pre-Charge Period
    OLED_Command(0x25);
    OLED_Command(SSD1306_SETVCOMDETECT);          //0xDB   Set VCOMH Deselect Level
    OLED_Command(0x20);
    OLED_Command(SSD1306_DISPLAYALLON_RESUME);    //0xA4   Set Entire Display On/Off
    OLED_Command(SSD1306_NORMALDISPLAY);          //0xA6   Set Normal/Inverse Display
    OLED_Command(SSD1306_DISPLAYON);              //0xAF   Set OLED Display On
} 
 
void OLED_SetRow(uint8_t add)
{
    add = 0xB0 | add;
    OLED_Command(add);
}
 
void OLED_SetColumn(uint8_t add)
{
    add += 32;
    OLED_Command((SSD1306_SETHIGHCOLUMN | (add >> 4))); 
    OLED_Command((0x0f & add));                         
}
 
void OLED_PutPicture(const uint8_t *pic)
{
    unsigned char i,j;
    for(i=0; i<5; i++) 
    {
        OLED_SetRow(i);
        OLED_SetColumn(0);
        for(j=0; j<96; j++) 
        {
            OLED_Data(*pic++);
        }
    }
}
 
void OLED_SetContrast(uint8_t temp)
{
    OLED_Command(SSD1306_SETCONTRAST);
    OLED_Command(temp);                  
}
 
void OLED_SetScale(uint8_t sx, uint8_t sy){
    _sx = sx; _sy = sy;
}
 
void OLED_Clear(void)
{
    unsigned char i,j;
    for(i=0; i<5; i++) 
    {
        OLED_SetRow(i);
        OLED_SetColumn(0);
        for(j=0; j<96; j++)  OLED_Data(0);
    }
    _x = 0; _y = 0;
    OLED_SetRow(0);
    OLED_SetColumn(0);
}
 
void OLED_Putchar(char ch)
{
    uint8_t i, j, k, byte;
    const uint8_t *f = &font[(ch-' ')*5];
    const uint8_t mask[]={1, 3, 7, 0xf };
 
    for(i=0; i<6; i++) {
        uint32_t word;
        byte = *f++ << 1;
        if (i==5) byte = 0;
        for(j=0; j<8; j++) { 
            word <<= _sy;
            if (byte & 0x80) word |= mask[_sy-1];
            byte <<= 1;
        }
        for(j=0; j<_sy; j++){ 
            OLED_SetRow(_y+j) ;
            OLED_SetColumn(_x+i*_sx);
            for(k=0; k<_sx; k++){ 
                OLED_Data(word);
            }
            word >>= 8;
        }
    }
 
    _x+= 6 * _sx;
    if (_x >= OLED_WIDTH) { 
        _x = 0; OLED_SetColumn(0);
        _y += _sy;
        if (_y >= 5-_sy) { 
            _y = 0;
        }
        OLED_SetRow(_y);
    }
}
 
void OLED_Puts(char x, char y, char *s)
{
    _y = y; _x = x;
    OLED_SetRow(_y);
    OLED_SetColumn(_x);
    while(*s) {
        OLED_Putchar(*s++);
        _x++;
    }
}

Los códigos mas la librería para Arduino se puede descargar desde este link.